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Sean Sanford

Abstract

In these notes we calculate the coend∫ X∈C
C(X,X),

for a finite linear category C, subject to a certain dimension restriction on
indecomposable objects. In doing so, we explicitly describe the universal
cowedge

τ :
⊕
X∈C

C(X,X)!

∫ X∈C
C(X,X),

which we interpret as a kind of trace.

1 The Cowedge Condition

Here we give a specific interpretation of the idea of coends that is relevant
to our situation. Let C and D be categories, and let K : Cop × C ! D be a
functor.

Definition A morphism of the form

η :
⊕
X∈C

K(X,X)! D
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is called a cowedge under K if for all f : X ! Y the following square
commutes:

K(Y,X) K(X,X)

K(Y, Y ) D

K(f,X)

K(Y,f) η

η

In these notes, we will be concerned with the situtation where C is a
finite K-linear category, with K algebraically closed, D = Vec and K( , ) =
C( , ), the hom-functor. In this situation, C(f,X) is usually written as f ∗

and is precomposition with f , while C(Y, f) is usually written f∗ and is
postcompostion with f . By making the appropriate substitutions to the
above diagram, we arrive at

C(Y,X) C(X,X)

C(Y, Y ) V.

f∗

f∗ η

η

Note that if g ∈ C(Y,X), then commutativity of the diagram implies
η(gf) = η(fg). This will be an important formula for us, so we give it a
name.

Definition For the sake of these notes, a morphism

η :
⊕
X∈C

C(X,X)! V

is said to satisfy the cowedge condition if for any pair of morphisms f and g
in C, η(gf) = η(fg) whenever both compositions are defined.

Thus we find that such a morphism out of the direct sum1 is a cowedge
under C( , ) if and only if it satisfies the cowedge condition.

1Since finite linear categories are essentially small, up to equivalence this direct sum
exists in Vec. Technically this fact is not necessary for our argument, but it allows our
notation to be more economical.
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Definition A coend is an initial cowedge. This means that τ is a coend of
K if for every cowedge η under K there is a unique linear map ζ such that
η = ζτ . By abuse of notation the term coend also refers to the object at the
codomain of the cowedge, and for this object we use the notation∫ X∈C

K(X,X),

where the symbol X acts as an index or ‘dummy variable’ similar to the
notation used in products and coproducts.

Let I be a set of representatives of isomorphism classes of indecomposable
objects in C. The conclusion of these notes is that, provided dim

(
End(X)

)
6=

0 ∈ K for each X ∈ I, ∫ X∈C
C(X,X) ∼= KI.

2 General Observations

Here we discuss several facts that will be important for our main result.
First, we take advantage of the fact that our category C has an epi-monic
factorization.

Lemma 2.1 (Fitting) Let f : X ! X be an endomorphism in C. Then there
exists an N ∈ N such that

X ∼= ker(fN)⊕ im(fN).

Proof. We begin by factoring f via its image:

X X

X1

f

e1 m1

Next, copy the inclusion of the image m1 : X1 ↪! X to the left side of the
diagram to form a parallelogram:

X X

X1 X1

f

e1

m1

f1

m1
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This construction shows that given any endomorphism f , we can factor
it as f = m1e1, and from this we can form the endomorphism f1 = e1m1 :
X1 ! X1 of the image of f . This creates a subobject X1 ⊆ X, and we can
repeat this process to obtain a chain of subobjects:

· · · ⊆ X4 ⊆ X3 ⊆ X2 ⊆ X1 ⊆ X

Since all objects in C have finite length, this process must terminate in a
minimal element after a finite number of steps

XN+1 = XN ⊆ · · · ⊆ X4 ⊆ X3 ⊆ X2 ⊆ X1 ⊆ X,

and this happens precisely when fN is an isomorphism.
Armed with this information, we can patch the corresponding parallelo-

grams together to form a ‘quilt diagram’:

X X X X

X1 X1 X1 X1

X2 X2 X2 X2

XN XN XN XN

f

e1

f

e1

m1

f1

e2

m1

f1

e2

m1 m1

m2

f2

m2

f2

m2 m2

fN fN

Now define the following morphisms

e : = eNeN−1 · · · e2e1
m : = m1m2 · · ·mN−1mN

p : = mf−NN e,

where the last formula makes sense since fN is an isomorphism. Observe
that p is an idempotent

p2 =
(
mf−NN e

) (
mf−NN e

)
= mf−NN fNN f

−N
N e

= mf−NN e = p,
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and thus X ∼= ker(p)⊕ im(p). Finally notice that

ker(p) ∼= ker(e) ∼= ker(fN) , and

im(p) ∼= im(e) ∼= im(fN).

Note: This is an abstract formulation and proof of Fitting’s Lemma, which
was originally a statement about linear maps between finite dimensional vec-
tor spaces. For an exposition of the classical version, see e.g. [Lei15].

Corollary 2.1.1 Any endomorphism f : X ! X of an indecomposable object
X in C is either an isomorphism or nilpotent.

This corollary is a powerful insight into the endomorphism rings of in-
decomposables, and we will take dramatic advantage of it. The rest of the
results in this section concern endomorphisms of a fixed indecomposable X.

Lemma 2.2 (Schur’s Lemma for Indecomposables) For any endomorphism
f : X ! X, there is a unique scalar λ ∈ K such that f − λ · idX is nilpotent.

Proof. Let Lf : End(X) ! End(X) be the map g 7! fg. This map Lf is a
linear map between finite dimensional vector spaces over K, so it necessarily
has an eigenvector. Let g ∈ End(X) be an eigenvector of Lf with eigenvalue
λ. This means that

fg = Lfg = λ · g
=⇒

(f − λ · idX)g = 0.

Since g 6= 0, im(g) 6= 0 and hence f − λ · idX has a nontrivial kernel. By
Corollary 2.1.1 we can conclude that f − λ · idX must be nilpotent.

For uniqueness, suppose that both h := f − λ · idX and k := f − µ · idX
are nilpotent. This would then require that

λ · idX + h = f = µ · idX + k

=⇒
(λ− µ) · idX + h = k.
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Notice that in the last equation above, the left-hand side is a polynomial
in h. Any polynomial in a nilpotent variable is a unit precisely when the
coefficient of 1 (= idX in this case) is a unit in the field. Since the right-hand
side is nilpotent, the left-had side must not be a unit, and hence λ = µ.

Lemma 2.3 For any indecomposable X, the identity idX cannot be written
as a sum of nilpotent morphisms.

Proof. As an initial case, observe that

idX = h+ k

=⇒
idX − h = k.

We have already seen in the proof of Lemma 2.2 that this implies that h and
k cannot both be nilpotent. We conclude that idX is not the sum of two
nilpotent morphisms.

Now suppose that in order to write idX as a sum of nilpotents, it takes
at least n+ 1 summands. This would show that

idX =
n∑
i=0

hi

idX − h0 =
n∑
i=1

hi

idX = (idX − h0)−1 ·
n∑
i=1

hi

idX =
n∑
i=1

(idX − h0)−1hi.

On the right-hand side, each summand is a composition of an isomorphism
and a nilpotent. Such compositions necessarily have nontrivial kernel, and
hence must themselves be nilpotent by Corollary 2.1.1. This contradicts
our assumption, since we have now written idX as a sum of only n many
nilpotents. Thus by induction, there can be no way of writing idX as a sum
of nilpotents.

Corollary 2.3.1 Any finite K-linear combination of nilpotents is again nilpo-
tent.
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Proof. Let f be a finite K-linear combination of nilpotents. By Proposition
2.2, there exists a unique λ such that g := f − λ · idX is nilpotent. Suppose
for the sake of contradiction that λ 6= 0. This would imply that

idX =
1

λ

(
f − g

)
,

but the right-hand side is a finite sum of nilpotents, and this contradicts

Proposition 2.3. � Thus we may conclude that f = g, so f is nilpotent as
desired.

Proposition 2.4 All morphisms in End(X) commute up to a nilpotent mor-
phism.

Proof. Let u := f −λ · idX and v := g−µ · idX be nilpotent endomorphisms.
Then we have that all commutators are equal to commutators of nilpotents,
because

fg = (λ · idX + u)(µ · idX + v) = λµ · idX + λ · v + µ · u+ uv

gf = (µ · idX + v)(λ · idX + u) = λµ · idX + µ · u+ λ · v + vu

=⇒
fg − gf = uv − vu.

Observe that the composition of two nilpotents necessarily has a nontriv-
ial kernel, so by Corollary 2.1.1 it must again be nilpotent. Together with
Corollary 2.3.1, this implies that all commutators of nilpotents are again
nilpotent. Thus all commutators are nilpotent, and this is equivalent to the
claim.

Definition Let X be any indecomposable object, 2.2 implies that there is a
well-defined map

λX : End(X)! K,

which takes an endomorphism f : X ! X and maps it to the unique scalar
λX(f) that makes f − λX(f) · idX nilpotent.

Proposition 2.5 The map λX is linear, and for any two f, g : X ! X,

λX(fg) = λX(gf).
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Proof. Let k ∈ K. Obersve that

(k · f + g)−
(
k · λX(f) + λX(g)

)
· idX = k ·

(
f − λX(f) · idX

)
+
(
g − λX(g) · idX

)
.

The right hand side is nilpotent by 2.3.1 and the definition of λX . Thus the
left hand side is nilpotent, so by uniqueness, λX is linear.

By linearity and proposition corollary 2.4, we find that

λX(fg)− λX(gf) = λX(fg − gf) = 0,

and this proves the claim.

After all of the above, the reader may have begun to suspect the following
claim.

Proposition 2.6 For every indecomposable X in C there exists a basis of
End(X), where the matrix of (left multiplication by) every endomorphism is
upper triangular and constant along the diagonal.

Proof. The previous results of this section show that the set of all nilpotent
morphisms N ( End(X) is an ideal, and in fact it is the Jacobson radical.
By Nakayama’s lemma, N2 ( N (provided N 6= 0), and there is some n such
that Nn = 0. Thus we obtain a filtration

0 ( Nn−1 ( · · · ( N ( End(X).

Any basis respecting this filtration will necessarily make all the matrices of
left multiplication upper triangular. The statement about being constant
along the diagonal follows from Lemma 2.2.

The author suspected this for some time, and would like to thank David
Speyer for his Math Overflow post [hes] which explained how the proof should
go.

Note: The scalar map λX is easily seen to be the map that picks out the
common scalar along the diagonal in this upper triangular basis.

Definition Let X be an indecomposable, and suppose A ∈ End
(⊕

iX
)

is
given by its matrix coefficients A = (Aij)ij, where each Aij : X ! X. In
analogy to the classical trace, define a map

TX(A) :=
∑
i

λX(Aii)
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Proposition 2.7 Given two maps A,B ∈ End
(⊕

iX
)
,

TX(AB) = TX(BA)

Proof. This is a direct computation:

TX(AB) =
∑
i

λX
(
(AB)ii

)
=
∑
i

λX

(∑
j

AijBji

)
=
∑
i,j

λX
(
AijBji

)
2.5
=
∑
i,j

λX
(
BjiAij

)
=
∑
j

λX

(∑
i

BjiAij

)
=
∑
j

λX
(
(BA)jj

)
= TX(BA).

Lemma 2.8 Suppose X � Z are each indecomposable and f : X ! X
factors through Z like

X X

Z

f

g h
,

then f is nilpotent.

Proof. Suppose for the sake of contradiction that f is an isomorphism. This
would imply that p := gf−1h : Z ! Z is an idempotent. This would then
imply that Z ∼= X ⊕ X ′, and hence Z ∼= X by the indecomposability of Z.
Thus f must not have been an isomorphism, and therefore by 2.1.1 it must
be nilpotent.
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3 Consequences of the Cowedge Condition

For this section, let

η :
⊕
X∈C

C(X,X)! V

be a cowedge under C( , ).

Lemma 3.1 If f : X ! X is a nilpotent endomorphism, then η(f) = 0.

Proof. Here we reuse the factorization argument from 2.1, so the reader is
encouraged to look back at the quilt 2. Let N ∈ N be the smallest such that
fN = 0. Note that im(fn+1) ( im(fn) for every n ≤ N − 1. Thus our N
(the degree of nilpotency) is precisely the terminating N at the bottom of
the quilt. In particular this means that fN = 0 since it is an endomorphism
of XN = 0. Using the cowedge condition, we find that

η(f) = η
(
m1e1

)
= η
(
e1m1

)
= η
(
f1
)

= η
(
m2e2

)
= η
(
e2m2

)
= η
(
f2
)

...

= η
(
fN
)

= η(0) = 0.

Corollary 3.1.1 If f is an endomorphism of an indecomposable X, then
η(f) = λX(f) · η(idX) for some unique λ ∈ K.

Proof. Combine lemma 3.1 with the definition of λX .

Lemma 3.2 Suppose φ : Y !
⊕n

i=1X is an isomorphism, with X inde-
composable (Y is X-isotypic). Then for any endomorphism f of Y , we have
that

η(f) = TX
(
φfφ−1

)
· η(idX).
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Moreover, this scalar TX
(
φfφ−1

)
does not depend on the chosen isomorphism

φ.

Proof. Conjugating f by φ, we obtain an endomorphism φfφ−1 :
⊕

iX !⊕
iX. We can write φfφ−1 as a sum of matrix coefficients like

φfφ−1 = idY φfφ
−1idY

=

(∑
i

ιiπi

)
φfφ−1

(∑
j

ιjπj

)
=
∑
i,j

ιi(πiφfφ
−1ιj)πj.

Now we can apply η to obtain

η(f) = η(fφ−1φ)

= η(φfφ−1)

= η

(∑
i,j

ιi(πiφfφ
−1ιj)πj

)
=
∑
i,j

η
(
ιi(πiφfφ

−1ιj)πj

)
=
∑
i,j

η
(

(πiφfφ
−1ιj)πjιi

)
=
∑
i

η
(
πiφfφ

−1ιi
)

3.1.1
=
∑
i

λX
(
πiφfφ

−1ιi
)
· η(idX)

=

(∑
i

λX
(
πiφfφ

−1ιi
))
· η(idX)

= TX
(
φfφ−1

)
· η(idX).

This establishes the formula. To see that the map φ is irrelevant, let ψ be
another such isomorphism. A quick computation shows that

TX
(
φfφ−1

)
= Tx

(
φfψ−1ψφ−1

)
2.7
= Tx

(
ψφ−1φfψ−1

)
= Tx

(
ψfψ−1

)
.
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Note: In light of 3.2, we will write TX(f) := TX
(
φfφ−1

)
. This is not only

easier to read, but also avoids introducing dummy variables that don’t effect
the output.

Proposition 3.3 Let f : Y ! Y be an endomorphism of an arbitrary object
in C. Then

η(f) =
∑
X∈I

TX(πXfιX) · η(idX).

Proof. Every object in C has finite length, and so the general Krull-Schmidt
theorem (see for e.g. [EGNO15]) holds. Let us choose an isomorphism

Y ∼=
⊕
X∈I

(
nX⊕
iX=1

X

)
and define the X-isotypic components to be the summands

YX ∼=
nX⊕
iX=1

X. (1)

As before, we can rewrite f as a sum like

f =
∑
X,Z∈I

ιXπXfιZπZ .

Then applying η, we find

η(f) =
∑
X,Z∈I

η
(
ιXπXfιZπZ

)
=
∑
X,Z∈I

η
(
πXfιZπZιX

)
2.8
=
∑
X∈I

η
(
πXfιX

)
3.2
=
∑
X∈I

TX(πXfιX) · η
(
idX
)

=:
∑
X∈I

TX(πXfιX) · η(idX).
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Heuristically, this last proposition says that any cowedge under C( , ) is
completely determined by its values on the set {idX}X∈I . This fact will be
crucial to proving that KI has the specified universal property.

4 The Universal Cowedge

We begin with a definition:

Definition The map τ is determined by the formula

τ :
⊕
Y ∈C

C(Y, Y ) −! KI(
Y

f
!Y

)
7−!

∑
X∈I

TX(πxfιX) ·X.

Note: After reading this definition, it should be noted that although we have
written down this formula with the sole purpose of constructing a cowedge,
Proposition 3.3 only furnishes a necessary condition. We wish to show that
this formula is sufficient.

Proposition 4.1 Let Y and Y ′ be two arbitrary objects in C, and let f : Y !
Y ′ and g : Y ′ ! Y be any morphisms between them. Then τ(fg) = τ(gf),
i.e. τ is a cowedge.
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Proof.

τ(fg) :=
∑
X∈I

TX(πXfgιX) ·X

=
∑
X∈I

TX

(
πXf

(∑
Z∈I

ιZπZ

)
gιX

)
·X

2.8
=
∑
X∈I

TX
(
πXfιXπXgιX

)
·X

=
∑
X∈I

TX
(
(πXfιX)(πXgιX)

)
·X

2.7
=
∑
X∈I

TX
(
(πXgιX)(πXfιX)

)
·X

2.8
=
∑
X∈I

TX

(
πXg

(∑
Z∈I

ιZπZ

)
fιX

)
·X

=
∑
X∈I

TX
(
πXgfιX

)
·X

= τ(gf).

We have now done enough legwork so that the proof of our main theorem
is easy to compile.

Theorem 4.2 The cowedge

τ :
⊕
X∈C

C(X,X) −! KI,

is initial. In particular, we obtain a canonical identification

KI ∼=
∫ X∈C

C(X,X).

Proof. Let

η :
⊕
X∈C

C(X,X)! V
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be an arbitrary cowedge. By Proposition 3.3, the value of η is determined
by the values {η(idX)}X∈I . Thus we can define a map

ζ : KI −! V

X 7−! η(idX).

From the construction, it is clear that η = ζτ . Now suppose

ζ ′ : KI −! V,

is any linear map that satisfies η = ζ ′τ . Then it is immediate that

η(idX) = ζ ′
(
τ(idX)

)
= ζ ′(X)

=⇒
ζ ′ = ζ,

so this factorization is unique.

5 Multiplicative Structure

In this section we consider the case when C is not just finite, K-linear abelian,
but also monoidal. [This section should have more exposition and references
here].

The conclusion of this section is that when C is a finite tensor category,
KI has a natural structure of a K-algebra (aka the Green Ring), and that
τ is suitably compatible with this structure. This is none other than the
representation ring, tensored over Z with the K. In various other works (see
e.g. [CVOZ14]) this ring is denoted by the dissapointingly nondescript r(C).
Green himself [Gre64] used the notation a(G), when C = RepK(G). We prefer
our notation, but are open to suggestions.

Proposition 5.1 The kernel of τ is an ideal with respect to the tensor prod-
uct, in the sense that

τ(k) = 0 =⇒ ∀f , τ
(
f ⊗ k

)
= 0.

Note: This should not be confused with the notion of ‘tensor ideal’ (c.f.
[EO18]) since τ does not respect composition in any meaningful way.

15



Proof.

τ
(
f ⊗ (gh− hg)

)
= τ
(
f ⊗ gh− f ⊗ hg)

)
= τ
(
(f ⊗ g)(id⊗ h)− (id⊗ h)(f ⊗ g))

)
= 0

This can be used to give the following

Definition The product on KI is determined by the formula

τ(f) · τ(g) : = τ
(
f ⊗ g

)
.

Since τ is surjective, this product is everywhere-defined, and Proposition
5.1 shows that the product is well-defined. Next, observe that

τ
(
f ⊕ g

)
= τ
(
ι1fπ1 + ι2gπ2

)
= τ
(
ι1fπ1

)
+ τ
(
ι2gπ2

)
= τ
(
π1ι1f

)
+ τ
(
π2ι2g

)
= τ
(
f
)

+ τ
(
g
)
.

In particular, this shows that for any X, Y ∈ KI, we have

X + Y = τ
(
idX
)

+ τ
(
idY
)

= τ
(
idX ⊕ idY

)
= τ
(
idX⊕Y

)
, and

X · Y = τ
(
idX ⊗ idY

)
= τ
(
idX⊗Y

)
.

The above calculation shows that the ring structure we have defined on
KI using abstract endomorphisms matches the ring structure obtained by
thinking of KI as the Green ring of C. This compatibility of τ with the
tensor product serves to solidify the interpretation of τ as a kind of trace.
To illustrate this, let us do some generalized character theory.

Let G be a finite group. There is a category RepC(G) of C-valued G-
representations, whose objects are pairs

(
V, ρ
)
, where V ∈ C and ρ : G !
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End(V ). The morphisms are those morphisms in C that are G-equivariant
(a.k.a. intertwiners), and composition is simply composition in C. If BG is
the one object category whose morphisms are G, then RepC(G) is isomorphic
to the functor category Cat

(
BG, C

)
.

Definition The character χρ of a representation
(
V, ρ
)

is the function

χρ : G −! KI
g 7−! τ

(
ρ(g)

)
.

As with classical representation theory, the properties of τ imply that the
map

χ :

∫ (V,ρ)

RepC(G)
(
(V, ρ) , (V, ρ)

)
−! Set

(
G ,

∫ X

C(X,X)

)
(V, ρ) 7−! χρ

is a ring homomorphism. In the above we have applied Theorem 4.2 twice to
identify the left-hand side with the Green ring of the category RepC(G) (the
representation ring), and the right-hand side with the ring of functions from
G to the Green ring of C.

6 Applications to Pivotal Tensor Categories

Definition A tensor category (over K) is K-linear, abelian, rigid, monoidal
category, where End(1) ∼= K.

A particularly nice class of tensor categories is that of fusion categories.

Definition A fusion category is a finite, simisimple tensor category.

Example 6.1 The following are fusion:

• the category Vec of vector spaces over K,

• the category Vec(G) of G-graded vector spaces, where G is a finite
group.

• the RepK(G), representations of a finite group G, provided |G| 6= 0 ∈ K,
and more generally

17



• the category RepK(H), representations of a finite dimensional, semisim-
ple Hopf algebra.

Definition A pivotal structure on a rigid monoidal category is a natural
isomorphism a : idC ! (−)∗∗ that is monoidal, i.e. for all X, Y ∈ C, the
following diagram commutes.

X ⊗ Y

(X ⊗ Y )∗∗ X∗∗ ⊗ Y ∗∗

aX⊗Y aX⊗aY

∼=

A category is called pivotal is it is equipped with a preferred pivotal structure.

For this section, let C be a pivotal fusion category. In [Shi17] and [Shi19],
Shimizu defines the algebra CF(C) of class functions. In our notation, we
have that

Definition As a vector space,

CF(C) := C
(
1 ,

∫ X

X∗ ⊗X
)
.

Shimizu goes on to show that CF(C) has connections with the Grothendieck
ring Gr(C), and can be used to determine whether a braiding is nondegener-
ate. Using the pivotal structure, we can define a morphism kX : C(X,X)!
CF(C) for every X ∈ C by the composition:

C(X,X)! C(1, ∗X ⊗X)! C(1, X∗ ⊗X)! C
(
1 ,

∫ X

X∗ ⊗X
)

=: CF(C).

By the naturality of the pivotal structure, it is easily seen that for a given pair
f : Y ! X and g : X ! Y , we have kX(fg) = kY (gf). In other words, these
maps combine to form a cowedge k under C( , ). By the universal property
of KI, we obtain a unique map

κ : KI ! CF(C),

such that k = κτ .
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In the setting of tensor categories, semisimplicity is equivalent to the ex-
actness of the functor C(1,−). This exactness condition immediately implies
that κ is the following isomorphism:

KI =

∫ X

C(X,X)

∼=
∫ X

C(1, ∗X ⊗X)

∼=
∫ X

C(1, X∗ ⊗X)

∼= C
(
1 ,

∫ X

X∗ ⊗X
)

= CF(C).

Furthermore, semisimplicity implies that the Green ring is the same as the
Grothendieck ring. These casual observations imply that

Corollary 6.0.1 For any pivotal fusion category, the map

κ : Gr(C) −! CF(C)

is an isomorphism.

7 Categorical Traces

We now proceed to investigate a categorified version of the coend construc-
tion. We will find that there is a notion of the trace of a functor, and that
the coend we have investigated is only the trace of the identity functor. In
this section we will make considerable use of coend calculus. For background
on these techniques, see e.g. [Loregian].

Let C be any finite K-linear category, and let F : C ! C be any K-linear
functor.

Definition The trace T (F ) of F is defined to be the vector space:

T (F ) :=

∫ X∈C
C(X,FX)

Note: This construction is guaranteed to exist by the finiteness of C, and the
use of a universal property provides a vector space which is well-defined up
to an isomorphism which is unique.
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Proposition 7.1 Let ιH denote the cowedge corresponding to T (H). Given
two functors F : D ! C and G : C ! D, there is a canonical isomorphism

T (FG)
ζF,G
−!T (GF )

ιFGX

(
X

f
−!FGX

)
ζF,G
7−! ιGFGX

(
GX

Gf
−!GFGX

)
.

Proof. This is a direct computation using coend calculus and liberal use of
the Yoneda lemma:

Vec

(∫ X

C(X,FGX) , V

)
∼=
∫
X

Vec
(
C(X , FGX) , V

)
よ∼=
∫
X

Nat

(
D(−, GX) , Vec

(
C(X,F−) , V

))

∼=
∫
X

∫
Y

Vec

(
D(Y,GX) , Vec

(
C(X,FY ) , V

))
∼=
∫
X

∫
Y

Vec
(
D(Y,GX)⊗ C(X,FY ) , V

)
∼=
∫
Y

∫
X

Vec
(
C(X,FY )⊗D(Y,GX) , V

)
∼=
∫
Y

∫
X

Vec

(
C(X,FY ) , Vec

(
D(Y,GX) , V

))

∼=
∫
Y

Nat

(
C(−, FY ) , Vec

(
D(Y,G−) , V

))
よ∼=
∫
Y

Vec
(
D(Y , GFY ) , V

)
∼= Vec

(∫ Y

D(Y , GFY ) , V

)
よ

=⇒∫ X

C(X,FGX) ∼=
∫ Y

D(Y,GFY ).

From the chain of isomorphisms above, the Yoneda lemma supplies an explicit

20



isomorphism of vector spaces. Chasing through the above computation on
the level of elements yields the desired map.

If C is a fusion category over K, a C-module category is a pair (M, ρ),
whereM is a K-linear category, and ρ = (ρ0, ρ1) : C ! End(M) is a monoidal
functor. This is a categorical analogue of a module over a ring. For X ∈ C
and M ∈M, often we adopt the shorthand X .ρM := ρ0(X)(M), or simply
X.M when the functor ρ is clear from context. Given two module categories
(M, ρ) and (N , ν), we can define the direct sum

(M, ρ) � (N , ν) :=
(
M�N , X .ρ�ν (M,N) := (X .ρM,X .ν N)

)
We say that (M, ρ) is indecomposable if it is not equivalent to a direct sum

of nontrivial module categories. For example, the indecomposable module
categories for Vec(G) correspond to transitive G-sets, together with data
encoding the tensor structure maps ρ1. The transitive G-sets are furthermore
in bijection with conjugacy classes of subgroups L ≤ G, and the extra data
is encoded by certain cohomology classes in H2(L;K×). This classification is
due to Ostrik in [module cats over the drinfeld...].

Given two module categories (M, ρ) and (N , ν) over Vec(G), we can
define their Deligne tensor product by the formula

g .ρ�ν (M �N) := (g .ρM) � (g .ν N).

It then makes sense to ask how the tensor product of two indecomposable
module categories decomposes into indecomposables. In the classical case,
the question of how tensor products of irreducibles decompose into irre-
ducibles is the data needed to compute the Brauer ring Ω(G). This higher
representation theory admits its own version of a Brauer ring, now with
indecomposable module categories replacing irreducible representations.

Classically, a key tool for these types of computations is the character
associated to a representation (V, ρ). This is simply defined to be the trace
of the ring homomorphism ρ. Continuing our analogy, we establish a new

Definition Given a module category ρ : Vec(G) ! End(M), the character
of (M,ρ) is the assignment

χρ : G −! Vec

g 7−! T
(
ρ(g)

)
.
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Proposition 7.2 The following properties hold for χ:

1. χρ�ν(g) ∼= χρ(g)⊕ χν(g)

2. χρ�ν(g) ∼= χρ(g)⊗ χν(g)

Proof. The proof is analogous to the classical case, and follows from the
definitions by using some coend calculus.

Now consider the vector spaces determined by χρ for some (M, ρ) a mod-
ule category for Vec(G). Note that the definition via universal construction
did not take advantage of the tensor structure maps of ρ. Since different
choices of ρ1 for the tensor structure of ρ can yield inequivalent module cat-
egories, the object χρ(a) as a mere vector space cannot distinguish certain
modules from one another. We would like to use the extra data of the tensor
structure to upgrade our vector spaces, in the hopes of allowing χρ to be a
complete invariant. This leads us to the following

Proposition 7.3 For every g, a ∈ G, the universal property of χρ determines
a map α(g, a) : χρ(a) ! χρ(gag

−1), and for any third h ∈ G, this map
satisfies,

α(h, gag−1) ◦ α(g, a) = α(hg, a)

Proof. Let M ∈M and f : M ! a.M . Consider the following construction

φg : f 7!
(
(ρ1g,ag−1)−1 . (g . M)

)
◦
(
g . ((ρ1ag−1,g) . M)

)
◦ (g . f)

Using this, let us define a map M(M,a . M)! χρ(gag
−1), by the formula

Φg : f 7! ι
ρ(gag−1)
(g.M)

(
φg(f)

)
.

Now suppose f factors as j ◦ k, where k : M ! N and j : N ! a .M . Since
g .− :M!M is a functor, we find that

Φg(j ◦ k) = ι
ρ(gag−1)
(g.M)

(
φg(j ◦ k)

)
= ι

ρ(gag−1)
(g.M)

(
φg(j) ◦ (g . k)

)
= ι

ρ(gag−1)
(g.N)

((
gag−1 . (g . k)

)
◦ φg(j)

)
= ι

ρ(gag−1)
(g.N)

(
φg
(
(a . k) ◦ j

))
= Φg

(
(a . k) ◦ j

)
.
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This computation shows that Φg satisfies the cowedge condition for C(−, a. =),
and thus by the universal property of χρ(a), determines a unique map α(g, a)
from χρ(a) to χρ(gag

−1) such that Φg = α(g, a) ◦ ιρ(a).
Finally, consider the map Φh ◦ φg = ι

ρ(hgag−1h−1)
N ◦ φh ◦ φg
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M(M,a . M) M
(
M, (hgag−1h−1) . (hg . M)

)
χρ(a)

χρ
(
hgag−1h−1

)
χρ
(
gag−1

)

M
(
M, (gag−1) . (g . M)

)
M
(
M, (hgag−1h−1) .

(
h . (g . M)

))

ι
ρ(a)
M

φg

ι
ρ(gag−1)
g.M

φh

ι
ρ(hgag−1h−1)
h.(g.M)

α(g,a)

α(h,gag−1)

φhg

ι
ρ(hgag−1h−1)
hg.M

α(hg,a)

For the sake of legibility we will suppress the superscripts from the ι maps.
The lower path around the outer square is ιh.(g.N) ◦ φh ◦ φg. Applying this
to f : M ! a . M gives:(

ιh.(g.N) ◦ φh ◦ φg
)
(f)

= ιh.(g.N)

(
ρ1(h, gag−1h−1)h.(g.M)

)

Here is a repost of the classical character table for D8:

Rep # � [g]! {1} {a2} {a, a3} {b, a2b} {ab, a3b}
1 1 1 1 1 1
I 1 1 −1 −1 1
J 1 1 −1 1 −1
IJ 1 1 1 −1 −1
V 2 −2 0 0 0
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2Rep # � [g]! {1} {a2} {a, a3} {b, a2b} {ab, a3b}
D4 1 1 1⊕ IJ 1⊕ J 1⊕ I
〈a〉 1⊕ IJ 1⊕ IJ 2(1⊕ IJ) 0 0
L0 1⊕ J 1⊕ J 0 2(1⊕ J) 0

Lφ0 1⊕ J I ⊕ IJ 0 2V 0
L1 1⊕ I 1⊕ I 0 0 2(1⊕ I)

Lφ1 1⊕ I J ⊕ IJ 0 0 2V

〈a2〉 1⊕ I ⊕ J ⊕ IJ 1⊕ I ⊕ J ⊕ IJ 0 0 0
〈b〉 1⊕ J ⊕ V 0 0 1⊕ J ⊕ V 0
〈ab〉 1⊕ I ⊕ V 0 0 0 1⊕ I ⊕ V
{1} 1⊕ I ⊕ J ⊕ IJ ⊕ 2V 0 0 0 0

� D4 〈a〉 L0 Lφ0 L1 Lφ1 〈a2〉 〈b〉 〈ab〉 {1}
D4 D4 〈a〉 L0 Lφ0 L1 Lφ1 〈a2〉 〈b〉 〈ab〉 {1}
〈a〉 〈a〉 2〈a〉 〈a2〉 〈a2〉 〈a2〉 〈a2〉 2〈a2〉 {1} {1} 2{1}
L0 L0 〈a2〉 2L0 2Lφ0 〈a2〉 〈a2〉 2〈a2〉 2〈b〉 {1} 2{1}
Lφ0 Lφ0 〈a2〉 2Lφ0 2L0 〈a2〉 〈a2〉 2〈a2〉 2〈b〉 {1} 2{1}
L1 L1 〈a2〉 〈a2〉 〈a2〉 2L1 2Lφ1 2〈a2〉 {1} 2〈ab〉 2{1}
Lφ1 Lφ1 〈a2〉 〈a2〉 〈a2〉 2Lφ1 2L1 2〈a2〉 {1} 2〈ab〉 2{1}
〈a2〉 〈a2〉 2〈a2〉 2〈a2〉 2〈a2〉 2〈a2〉 2〈a2〉 4〈a2〉 2{1} 2{1} 4{1}
〈b〉 〈b〉 {1} 2〈b〉 2〈b〉 {1} {1} 2{1} 2〈b〉 ⊕ {1} 2{1} 4{1}
〈ab〉 〈ab〉 {1} {1} {1} 2〈ab〉 2〈ab〉 2{1} 2{1} 2〈ab〉 ⊕ {1} 4{1}
{1} {1} 2{1} 2{1} 2{1} 2{1} 2{1} 4{1} 4{1} 4{1} 8{1}
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